Research

20190819_183632 PAPERS

  1. Alexandre Anahory Simoes, Juan Carlos Marrero and David Martin de Diego. JACOBI FIELDS IN NONHOLONOMIC MECHANICS. J. Phys. A 55 (2022), no. 4, Paper No. 045202, 53 pp.
  2. Alexandre Anahory Simoes, Juan Carlos Marrero and David Martin de Diego. EXACT DISCRETE LAGRANGIAN MECHANICS FOR NONHOLONOMIC MECHANICS.  Numer. Math. 151 (2022), no. 1, 49–98.
  3. Alexandre Anahory Simoes, Juan Carlos Marrero and David Martín de Diego. RADIAL KINETIC NONHOLONOMIC TRAJECTORIES ARE RIEMANNIAN GEODESICS! Anal. Math. Phys. 11 (2021), no. 4, Paper No. 152, 28 pp.
  4. Juan Carlos Marrero, Martín de Diego David, Eduardo Martínez. Local convexity for second order differential equations on a Lie algebroid. J. Geom. Mech. 13 (2021), no. 3, 477–499.
  5. Iakovos Androulidakis, Henrique Bursztyn, Juan Carlos Marrero, Alan Weinstein. Preface to special issue in honor of Kirill C. H. Mackenzie: Part I. J. Geom. Mech. 13 (2021), no. 3, i–ix
  6. Ogul Esen, Manuel Lainz, Manuel de León, Juan Carlos Marrero. Contact dynamics: Legendrian and lagrangian submanifolds Mathematics, Vol. 9, Núm. 21 (2021).

  7. Beniamino Cappelletti Montano; Antonio de Nicola; Juan Carlos Marrero; Ivan Yudin. ALMOST FORMALITY OF QUASI-SASAKIAN AND VAISMAN MANIFOLDS WITH APPLICATIONS TO NILMANIFOLDS. Israel J. Math. 241 (2021), no. 1, 37–87.

  8. Sergio Grillo, Juan Carlos Marrero, Edith Padrón: Extended Hamilton–Jacobi theory, symmetries and integrability by quadratures

    Mathematics, Vol. 9, Núm. 12 (2021)

  9. Alessandro Bravetti, Manuel de León, Juan Carlos Marrero and Edith Padrón. INVARIANT MEASURES FOR CONTACT HAMILTONIAN SYSTEMS: SYMPLECTIC SANDWICHES WITH CONTACT BREAD.  J. Phys. A: Math. Theor. 53 (2020) 455205 (24pp)
  10. Luís García Naranjo; JC Marrero. THE GEOMETRY OF NON HOLONOMIC CHAPLYGIN SYSTEMS REVISITED. Nonlinearity 33 (2020) 1297–1341.
  11. B Cappelletti Montano; A De Nicola; JC Marrero; I Yudin. HARD LEFSCHETZ THEOREM FOR COMPACT VAISMAN MANIFOLDS. Trans. Amer. Math. Soc. 371 – 2, pp. 755 – 776. 2019.
  12. JC Marrero ;E Padron. ON SYMPLECTIC LIFTS OF ACTIONS FOR COMPLETE LAGRANGIAN FIBRATIONS. In 60 years Alberto Ibort Fest, Classical and Quantum Physics: Geometry, Dynamics and Control (Springer Proceedings in Physics). Editors: G Marmo, D Martín de Diego and M C Muñoz-Lecanda. 229, pp. 305 – 324. 2019.
  13. G Bazzoni ;JC Marrero. ON LOCALLY CONFORMAL SYMPLECTIC MANIFOLDS OF THE FIRST KIND. Bulletin des Sciences Mathematiques. 143, pp. 1 – 57. 2018.
  14. A Ballesteros; JC Marrero; Z Ravanpak. POISSON-LIE GROUPS, BI-HAMILTONIAN SYSTEMS AND INTEGRABLE DEFORMATIONS 145204 (25pp). Journal of Physics A: Mathematical and Theoretical. 50, pp. 145204 (25pp). 2017.
  15. G Bazzoni; JC Marrero. LOCALLY CONFORMAL SYMPLECTIC NILMANIFOLDS WITH NO LOCALLY CONFORMAL KAHLER METRICS. Complex Manifolds. 4, pp. 172 – 178. 2017.
  16. S Ferraro; M deLeon; JC Marrero; D Martin de Diego; M Vaquero. ON THE GEOMETRY OF THE HAMILTON-JACOBI EQUATION AND GENERATING FUNCTIONS. Archive for Rational Mechanics and Analysis. 226 – 1, pp. 243 – 302. 2017.
  17.  JC Marrero; D Martin; E Martinez. ON THE EXACT DISCRETE LAGRANGIAN FUNCTION FOR VARIATIONAL INTEGRATORS: THEORY AND APPLICATIONS. Preprint, arXiv:1608.01586. 2016.
  18. B Cappelletti-Montano; A De Nicola; JC Marrero;I Yudin. A NON-SASAKIAN LEFSCHETZ K-CONTACT MANIFOLD OF TVIESKY TYPE. Proc Amer Math Soc. 144, pp. 5341 – 5353. 2016.
  19. G Bazzoni; JC Marrero; J Oprea. ASPLITTING THEOREM FOR COMPACT VAISMAN MANIFOLDS. Rend. Semin. Mat. Univ. Politec. Torino. 74 – 1-2, pp. 21 – 29. 2016.
  20. L García Naranjo; JC Marrero;E Pérez Chavela; M Rodríguez Olmos .CLASSIFICATION AND STABILITY OF RELATIVE EQUILIBRIA FOR THE TWO-BODY PROBLEM IN THE HYPERBOLIC SPACE OF DIMENSION TWO. J Differential Equations. 260 – 7, pp. 6375 – 6404. 2016.
  21. S Capriotti; JC Marrero. ON HAMILTON-POINCARE FIELD EQUATIONS. Banach Center Publications.110,pp. 9 – 24. 2016.
  22. JC Marrero;N Román Roy; M Salgado;S Vilarino. REDUCTION OF POLYSYMPLECTIC MANIFOLDS. J Phys A: Math and Theoret. 48 – 5, pp. 055206, 43 pp. 2015.
  23. B Cappelletti-Montano; A De Nicola; JC Marrero;I Yudin. SASAKIAN NILMANIFOLDS. International Mathematics Research Notices. 15, pp. 6648 – 6660. 2015.
  24. JC Marrero;D Martín de Diego;A Stern. SYMPLECTIC GROUPOIDS AND DISCRETE CONSTRAINED LAGRANGIAN MECHANICS. Discrete Continuous Dynamical Systems-Serie A. 35 – 1, pp. 367 – 397. 2015.
  25. JC Marrero; D Martín de Diego; E Martínez. THE LOCAL DESCRIPTION OF DISCRETE MECHANICS. Geometry, Mechanics, and Dynamics, Fields Institute Communications. 73, pp. 285 – 317. 2015.
  26. Y Fedorov; L GarcíaNaranjo; JC Marrero. UNIMODULARITY AND PRESERVATION OF VOLUMES IN NONHOLONOMIC MECHANICS. J Nonlinear Sci. 25 – 1, pp. 203 – 246. 2015.
  27. B Cappelletti-Montano;A De Nicola;JC Marrero;I Yudin. EXAMPLES OF COMPACT K-CONTACT MANIFOLDS WITH NO SASAKIAN METRIC. International Journal of Geometric Methods in Modern Physics. 11 – 9, pp. 1460028. 2014.
  28. E García-Toraño;E Guzman;JC Marrero;T Mestdag.REDUCED DYNAMICS AND LAGRANGIAN SUBMANIFOLDS OF SYMPLECTIC MANIFOLDS. J Phys A: Math and Theoret. 47, pp. 225203 – 24 pp. 2014.
  29. L García-Naranjo; AJ Maciejewski; JC Marrero; M Przybylska.THE INHOMOGENEOUS SUSLOV PROBLEM. Physics Letters A. 378, pp. 2389 – 2394. 2014.
  30. D Iglesias; JC Marrero; D Martín de Diego; E Padrón. DISCRETE DYNAMICS IN IMPLICIT FORM. Discrete Continuous Dynamical Systems – Series A. 33 – 3, pp. 1117 – 1135. 2013.
  31. L García-Naranjo; JC Marrero .NON EXISTENCE OF AN INVARIANT MEASURE FOR A HOMOGENEOUS ELLIPSOID ROLLING ON THE PLANE. Regular Chaotic Dynamics. 18 – 4, pp. 372 – 379. 2013.
  32. M de León; JC Marrero; D Martín de Diego; M Vaquero. ON THE HAMILTON-JACOBI THEORY FOR SINGULAR LAGRANGIAN SYSTEMS. J Math Physics. 54, pp. 032902 – 32 pages. 2013.
  33. D Iglesias; JC Marrero; M Vaquero. POLY-POISSON STRUCTURES. Lett Math Phys. 103, pp.1103-1133. 2013.
  34. CM Campos; E Guzmán; JC Marrero. CLASSICAL FIELD THEORIES OF FIRST ORDER AND LAGRANGIAN SUBMANIFOLDS OF PREMULTISYMPLECTIC MANIFOLDS. J Geom Mech. 4 – 1, pp. 1 – 26. 2012.
  35. M Barbero Liñán; M de León; JC Marrero; D Martín de Diego; MC Muñoz Lecanda. KINEMATIC REDUCTION AND THE HAMILTON-JACOBI EQUATION. J Geom Mech. 4 – 3, pp. 207 – 237. 2012.
  36. JC Marrero; E Padrón; M Rodríguez Olmos. REDUCTION OF A SYMPLECTIC LIKE LIE ALGEBROID WITH MOMENTUM MAP AND ITS APPLICATION TO FIBERWISE LINEAR POISSON STRUCTURES. J Phys A: Math and Theoret. 45, 2012.
  37. I Lacirasella; JC Marrero; E Padrón. REDUCTION OF SYMPLECTIC PRINCIPAL R-BUNDLES. J Phys A: Math and Theoret. 45, pp. 325202 – 29 pp. 2012.
  38. JC Marrero; N RománRoy;M Salgado;S Vilariño. ON A KIND NOETHER SYMMETRIES AND CONSERVATION LAWS IN K-COSYMPLECTIC FIELD THEORY. J Math Phys. 52, pp. 022901. 2011.
  39. A de Nicola; JC Marrero; E Padrón. REDUCTION OF POISSON-NIJENHUIS LIE ALGEBROIDS TO SYMPLECTIC-NIJENHUIS LIE ALGEBROIDS WITH A NONDEGENERATE NIJENHUIS TENSOR. J Phys A: Math Theoret. 44, 425206.
  40. JC Marrero; D Martín;E Padrón. UNIVERSAL MODELS VIA EMBEDDING AND REDUCTIONFOR LOCALLY CONFORMAL SYMPLECTIC STRUCTURES. Ann Global Anal Geom. 40, pp. 311 – 337. 2011.
  41. M de León; JC Marrero; D Martín de Diego. A GEOMETRICHAMILTON-JACOBI THEORY FOR CLASSICAL FIELD THEORIES. Variations, Geometry and Physics. pp. 129 – 140. Nova Sci Publ New York, 2010.P Balseiro; JC Marrero; D Martín de Diego;E Padrón. A UNIFIED FRAMEWORK FOR MECHANICS. HAMILTON-JACOBI EQUATION AND APPLICATIONS. Nonlinearity. 23 – 8, pp. 1887 – 1918. 2010. Relevant results: This paper was considered by the journal Nonlinearity as a «featured article” that is, a paper of great interest for the contents of IOP (see http://iopscience.iop.org/0951-7715/23/8/006 ). The paper was included in Nonlinearity Highlights 2010 
  42. M de León; JC Marrero; D Martín de Diego; M Salgado;S Vilariño. HAMILTON-JACOBI THEORY IN K-SYMPLECTIC FIELD THEORIES. Int J Geom. Meth. Mod. Phys. 7, pp. 1491 – 1507. 2010.
  43. JC Marrero. HAMILTONIAN MECHANICAL SYSTEMS ON LIE ALGEBROIDS, UNIMODULARITY AND PRESERVATION OF VOLUMES. J Geom. Mech. 2, pp. 243 – 263. 2010.
  44. M deLeón; JC Marrero; D Martín de Diego.LINEAR ALMOST POISSON STRUCTURES AND HAMILTON-JACOBI EQUATION. APPLICATIONS TO NONHOLONOMIC MECHANICS. J Geom Mech. 2, pp. 159 – 198. 2010.
  45. E Guzmán;JC Marrero. TIME-DEPENDENT MECHANICS AND LAGRANGIAN SUBMANIFOLDS OF PRESYMPLECTIC AND POISSON MANIFOLDS. J Phys A: Math Theoret. 43, pp. 505201. 2010.
  46. J Cortés; M deLeón; JC Marrero; E Martínez. NON-HOLONOMIC LAGRANGIAN SYSTEMS ON LIE ALGEBROIDS. Discrete and Continuous Dynamical Systems -Serie A. 24, pp. 213 – 271. 2009.
  47. JC Marrero; D Martín de Diego; D Sosa. VARIATIONAL CONSTRAINED MECHANICS ON LIE AFFGEBROIDS. Discrete and Continuous Dynamical Systems – Serie S. 3, pp. 105 – 128. 2009.
  48. D Iglesias; JC Marrero; D Martín de Diego; D Sosa. SINGULAR LAGRANGIAN SYSTEMS AND VARIATIONAL CONSTRAINED MECHANICS ON LIE ALGEBROIDS. Dynamical Systems-An International Journal. 23 – 3, pp.
  49. D Iglesias; JC Marrero; D Martín de Diego; E Martínez. DISCRETE NONHOLONOMIC LAGRANGIAN SYSTEMS ON LIE GROUPOIDS. J Nonlinear Science. 18 – 3, pp. 221 – 276. 2008.
  50. P Balseiro; M de León; JC Marrero; D Martín de Diego. THE UBIQUITY OF THE SYMPLECTIC HAMILTONIAN EQUATIONS IN MECHANICS. J Geom Mech. 1 – 1, pp. 1 – 34. 2009.
  51. J Grabowski; M deLeón; JCMarrero; D Martín de Diego. NONHOLONOMIC CONSTRAINTS: A NEW VIEW POINT. J Math Phys. 50, pp. 013520. 2009.
  52. M de León; JC Marrero;D Martín de Diego. SOME APPLICATIONS OF SEMI-DISCRETE VARIATIONAL INTEGRATORS TO CLASSICAL FIELD THEORIES. Qualitative Theory of Dynamical Systems. 7 – 1, pp. 195 – 212. 2008.
  53. D Iglesias; JC Marrero;D Martín de Diego; D Sosa. A GENERAL FRAMEWORK FOR NONHOLONOMIC MECHANICS: NONHOLONOMIC SYSTEMS ON LIE AFFGEBROIDS. J Math Phys. 48, pp. 083513. 2007.
  54. D. Iglesias; J.Grabowski; J.C.Marrero; E. Padrón; P. Urbanski. JACOBI STRUCTURES ON AFFINE BUNDLES. Acta Math Sinica. 23 – 5, pp. 769 – 788. 2007.
  55. D.Iglesias; J.C.Marrero; D. Martín de Diego ; E. Martínez ;E.Padrón. REDUCTION OF SYMPLECTIC LIE ALGEBROIDS BY A LIE SUBALGEBROID AND A SYMMETRY LIE GROUP. Symmetry Integrability and Geometry-Methods and Applications. 4 (049), pp. 28 pp. 2007.
  56. J Cortés; M de León; JC Marrero; D Martín de Diego;E Martínez. A SURVEY OF LAGRANGIAN MECHANICS AND CONTROL ON LIE ALGEBROIDS AND GROUPOIDS. Int J Geom Meth Mod Phys. 3 – 3, pp. 509 – 558. 2006.
  57. JC Marrero. AV-BUNDLES, LIE ALGEBROID THEORY AND THE IN HOMOGENEOUS COSYMPLECTIC FORMULATION OF THE DYNAMICS IN JET MANIFOLDS. Monografías de la Real Academia de Ciencias Exactas, Físicas, Químicas y Naturales de Zaragoza (libro homenaje a J.F. Cariñena por su 60 cumpleaños). 29, pp. 173 – 186. 2006.
  58. JC Marrero;D Martín de Diego; E Martínez. CORRIGENDUM. DISCRETE LAGRANGIAN AND HAMILTONIAN MECHANICS ON LIE GROUPOIDS. Nonlinearity. 19, pp. 3003 – 3004. 2006.
  59. JC Marrero; D Martín de Diego; E Martínez. DISCRETE LAGRANGIAN AND HAMILTONIAN MECHANICS ON LIE GROUPOIDS. Nonlinearity. 19, pp. 1313 – 1348. 2006.
  60. D. Iglesias; J.C. Marrero; E. Padrón; D. Sosa. LAGRANGIAN SUBMANIFOLDS AND DYNAMICS ON LIE AFFGEBROIDS. Reports in Math Phys. 57 – 3, pp. 385 – 436. 2006.
  61. JC Marrero; D Sosa. THE HAMILTON-JACOBI EQUATION ON LIE AFFGEBROIDS. Int J Geom Meth ModPhys. 3-3, pp.605-622. 2006.
  62. M de León; JC Marrero; E Martínez. LAGRANGIAN SUBMANIFOLDS AND DYNAMICS ON LIE ALGEBROIDS. J Phys A: Math and General (Topical Review). 38, pp. R241 – R308. 2005.
  63. M de León; J Marín Solano; JC Marrero; MC MuñozLecanda; N Román Roy.PRE-MULTISYMPLECTIC CONSTRAINT ALGORITHM FOR FIELD THEORY. Int J Geom Meth Mod Phys. 2, pp. 839 – 873. 2005.
  64. D.Iglesias; J.Grabowski; J.C. Marrero;E. Padrón; P.Urbanski.POISSON-JACOBI REDUCTION OF HOMOGENEOUS TENSORS. J Phys A: Math and Gen. 37, pp. 5383 – 5399. 2004.
  65. M de León; J C Marrero;D Martín de Diego. A NEW GEOMETRIC SETTING FOR CLASSICAL FIELD THEORIES. Banach Center Pub. 59, pp. 189 – 209. 2003.
  66. D Iglesias; JC Marrero. GENERALIZED LIE BIALGEBRAS AND JACOBI STRUCTURES ON LIEGROUPS.I srael J Math. 133, pp. 285 – 338. 2003.
  67. JC Marrero; D Iglesias. JACOBI GROUPOIDS AND GENERALIZED LIE BIALGEBROIDS. J Geom Phys. 48,pp. 385 – 425. 2003.
  68. M.de León ; B. López; J.C.Marrero; E. Padrón. ON THE COMPUTATION OF LICHNEROWICZ-JACOBI COHOMOLOGY. J Geom Phys. 44, pp. 507 – 522. 2003.
  69. D Iglesias; JC Marrero. GENERALIZED LIE BIALGEBROIDS AND STRONG JACOBI-NIJENHUIS STRUCTURES. Extracta Mathematicae. 17, pp. 259 – 271. 2002
  70. D Iglesias; JC Marrero. LIE ALGEBROID FOLIATIONS AND E^1(M)-DIRAC STRUCTURES. J Phys A: Mathand Gen. 35, pp. 4085 – 4104. 2002.
  71. M de León; J Marín Solano; JC Marrero; MC MuñozLecanda; N RománRoy. SINGULAR LAGRANGIAN SYSTEMS ON JET BUNDLES. Fortschr Phys. 50 – 2, pp. 105 – 169. 2002.
  72. R.Ibáñez; M. de León; B. López; J.C. Marrero; E. Padrón. DUALITY AND MODULAR CLASS OF A NAMBU-POISSON STRUCTURE. J Phys A: Math and Gen. 34, pp. 3623 – 3650. 2001.
  73. D Iglesias; JC Marrero. GENERALIZED LIE BIALGEBROIDS AND JACOBI STRUCTURES.J Geom Phys. 40,pp. 176 – 199. 2001.
  74. A Ibort; M deLeón; EA Lacomba; JC Marrero;D Martín de Diego; P Pitanga. GEOMETRIC FORMULATIONOF CARNOT’S THEOREM. J Phys A: Math and Gen. 34, pp. 1691 – 1712. 2001.
  75. R. Ibáñez; B. López; J.C. Marrero; E. Padrón. MATCHED PAIRS OF LEIBNIZ ALGEBROIDS, NAMBU-JACOBI STRUCTURES AND MODULAR CLASS. C R Acad Sci Paris, Serie I. 333, pp. 861 – 866. 2001.
  76. M. de Léon; J.C. Marrero; E. Padrón. ON THE GEOMETRIC PREQUANTIZATION OF BRACKETS. Rev. Acad Cien Serie A Mat. 95 – 1, pp. 65 – 83. 2001.
  77. D. Iglesias ;B. López; J.C.Marrero; E. Padrón. TRIANGULAR GENERALIZED LIE BIALGEBROIDS: HOMOLOGY AND COHOMOLOGY THEORIES. Banach Center Publications. 54, pp. 111 – 133. 2001.
  78. M. de León; JC Marrero;D Martín de Diego.VAKONOMICS MECHANICS VERSUS NON-HOLONOMIC MECHANICS: A UNIFIED GEOMETRICAL APPROACH. J Geom Phys. 35, pp. 126 – 144. 2000.
  79. F Cantrijn; M de León; JC Marrero;D Martín de Diego.ON ALMOST-POISSON STRUCTURES IN NONHOLONOMIC MECHANICS II: THE TIME-DEPENDENT FRAMEWORK. Nonlinearity. 13, pp. 1379 – 1409. 2000.
  80. D Iglesias; JC Marrero. SOME LINEAR JACOBI STRUCTURES ON VECTOR BUNDLES. CRAcadSciParis Serie I. 331, pp. 125 – 130. 2000.
  81. A Ibort; M de León; JC Marrero; D Martín de Diego. DIRAC BRACKETS IN CONSTRAINED DYNAMICS. Fortschr Phys. 47, pp. 459 – 492. 1999.
  82. J.C. Marrero; J. Monterde; E.Padrón. JACOBI-NIJENHUIS MANIFOLDS AND COMPATIBLE JACOBI STRUCTURES. C R Acad Sci Paris, Serie I. 329, pp. 797 – 802. 1999.
  83. R. Ibáñez; M. de León; J.C. Marrero; E.Padrón. LEIBNIZ ALGEBROID ASSOCIATED WITH A NAMBU-POISSON STRUCTURE. J Phys A: Math Gen. 32, pp. 8129 – 8144. 1999.
  84. F Cantrijn; M de León; JC Marrero; D Martín de Diego. REDUCTION OF CONSTRAINED SYSTEMS WITH SYMMETRIES. J Math Phys. 40 – 2, pp. 795 – 820. 1999.
  85. D Chinea; M de León; JC Marrero. A CANONICAL DIFFERENTIAL COMPLEX FOR JACOBI MANIFOLDS. Michigan Math J. 45, pp. 547 – 579. 1998.
  86. A Ibort; EA Lacomba; M de León; JC Marrero; D Martín de Diego; P Pitanga. GEOMETRIC FORMULATION OF MECHANICAL SYSTEMS SUBJECTED TO TIME-DEPENDENT ONE -SIDED CONSTRAINTS. J Phys A: Math Gen. 31, pp. 2655 – 2674. 1998.
  87. R Ibánez; M de León; JC Marrero.HOMOLOGY AND COHOMOLOGY ON GENERALIZED POISSON MANIFODLS. J Phys A: Math Gen. 31, pp. 1253 – 1266. 1998.
  88. R Ibáñez; M de León; JC Marrero; E.Padrón. NAMBU-JACOBIAND GENERALIZED JACOBI MANIFOLDS. J Phys A: Math Gen. 31, pp. 1267 – 1286. 1998.
  89. J.C. Marrero; E. Padrón. NEW EXAMPLES OF COMPACT COSYMPLECTIC SOLVMANIFOLDS. Arch Math. 34, pp. 337 – 345. 1998.
  90. R Ibáñez; M de León; JC Marrero; D Martín de Diego. REDUCTION OF GENERALIZED POISSON MANIFOLDS AND NAMBU-POISSON MANIFOLDS. Rep Math Phys. 42 – 3, pp. 71 – 90. 1998.
  91. F Cantrijn; M de León; JC Marrero; D Martín de Diego. REDUCTION OF NONHOLONOMIC MECHANICAL SYSTEMS WITH SYMMETRIES. Rep Math Phys. 42, pp. 25 – 45. 1998.
  92. R Ibáñez; M de León; JC Marrero; D Martín de Diego.COISOTROPIC AND LEGENDRE-LAGRANGIAN SUBMANIFOLDS AND CONFORMAL JACOBI-MORPHISMS. J Phys A: Math Gen. 30, pp. 5427 – 5444. 1997.
  93. M de León; JC Marrero. COMPACT COSYMPLECTIC MANIFOLDS WITH TRANSVERSALLY POSITIVE DEFINITE RICCI TENSOR. Rendiconti di Matematica. 17, pp. 607 – 625. 1997.
  94. J.C. Marrero; E. Padrón. COMPACT GENERALIZED HOPF AND COSYMPLECTIC SOLVMANIFOLDS AND THE HEISENBERG GROUP H(1,N). Israel J Math. 101, pp. 189 – 204. 1997.
  95. R Ibáñez; M de León;JC Marrero;D Martín de Diego. DYNAMICS OF GENERALIZED POISSON AND NAMBU-POISSON BRACKETS. J Math Phys. 38 – 5, pp. 2332 – 2344. 1997.
  96. M. de León; J.C. Marrero; E. Padrón. H-CHEVALLEY-EILENBERG COHOMOLOGY OF A JACOBI MANIFOLD AND JACOBI-CHERN CLASS. C R Acad Sci Paris, Serie I. 325, pp. 405 – 410. 1997.
  97. M. de León; J.C. Marrero; E. Padrón .LICHNEROWICZ JACOBI COHOMOLOGY. J Phys A:MathGen. 30, pp. 6029 – 6055. 1997.
  98. M. de Léon; J.C. Marrero; E. Padrón. LICHNEROWICZ-JACOBI COHOMOLOGY OF JACOBI MANIFOLDS. C R Acad Sci Paris, Serie I. 324, pp. 71 – 76. 1997.
  99. M de León; JC Marrero;D Martín de Diego. MECHANICAL SYSTEMS WITH NON-LINEAR CONSTRAINTS. IntJ Theor Phys. 36 – 4, pp. 979 – 995. 1997.
  100. M de León; JC Marrero; D Martín de Diego. NON-HOLONOMIC LAGRANGIAN SYSTEMS IN JET MANIFOLDS. J Phys A: Math Gen. 30, pp. 1167 – 1190. 1997.
  101. M. de León; J.C.Marrero; E.Padrón. ON THE GEOMETRY QUANTIZATION OF JACOBI MANIFOLDS. Math Phys. 38 – 12, pp. 6185 – 6213. 1997.
  102. M de León; JC Marrero; G.M. Tuynmann. R^{2N+1} IS A UNIVERSAL CONTACT MANIFOLD FORREDUCTION. J Phys A: Math Gen. 30, pp. 1605 – 1612. 1997.
  103. D Chinea; M deLeón; JC Marrero. SPECTRAL SEQUENCES ON SASAKIAN AND COSYMPLECTIC MANIFOLDS. Houston J Math. 23 – 4, pp. 631 – 649. 1997.
  104. JC Marrero; J Rocha. ON A PARTICULAR CLASS OF GENERALIZED HOPF MANIFOLDS. 25Años de Matemáticas en la Universidad de La Laguna, Secretariado de Publicaciones de la Universidad de La Laguna. pp. 397 – 404. 1996.
  105. D Chinea; M deLeón; JC Marrero. PREQUANTIZABLE POISSON MANIFOLDS AND JACOBI STRUCTURES. J Phys A: Math Gen. 29, pp. 6313 – 6324. 1996.
  106. M deLeón; JC Marrero. COMPACT COSYMPLECTIC MANIFOLDS OF POSITIVE CONSTANT?-SECTIONAL CURVATURE. Extracta Mathematicae. 9 – 1, pp. 28 – 31. 1994.
  107. JC Marrero; J Rocha.COMPLEX CONFORMAL SUBMERSIONS WITH TOTAL SPACE A LOCALLY CONFORMAL KAHLER MANIFOLD. Publ Math Debrecen. 47 – 3-4, pp. 335 – 348. 1995.
  108. D Chinea; M de León;JC Marrero. COEFFECTIVE COHOMOLOGY ON ALMOST COSYMPLECTIC MANIFOLDS. Bull Sci Math. 119, pp. 3 – 20. 1995.
  109. D Chinea; JC Marrero; J Rocha.ALMOST CONTACT SUBMERSIONS WITH TOTAL SPACE A LOCALLY CONFORMAL COSYMPLECTIC MANIFOLD. Annales de la Faculté des Sciences de Toulouse. IV – 3, pp. 473 – 517. 1995.
  110. D Chinea; M de León;JC Marrero. TOPOLOGY AND CURVATURE OF ALMOST COSYMPLECTIC MANIFOLDS. 25 Años de Matemáticas en la Universidad de La Laguna, Secretariado de Publicaciones de la Universidad de La Laguna. pp. 227 – 236. 1996.
  111. M de León; JC Marrero; D Martín de Diego.TIME-DEPENDENT CONSTRAINED HAMILTONIAN SYSTEMS AND DIRAC BRACKETS. J Phys A: Math Gen. 29, pp. 6843 – 6859. 1996.
  112. M de León; J Marín Solano; JC Marrero. THE CONSTRAINT ALGORITHM IN THE JET FORMALISM. Diff Geom and its Appl. 6, pp. 275 – 300. 1996.
  113. D Chinea; M de León; JC Marrero. THE CANONICAL DOUBLE COMPLEX FOR JACOBI MANIFOLDS. CR Acad Sci Paris, Serie I. 323, pp. 637 – 642. 1996.
  114. JC Marrero; J Rocha. LOCALLY CONFORMAL KAHLER SUBMERSIONS. Geometriae Dedicata.52,pp.271- 289. 1994.
  115. D Chinea; M de León; JC Marrero. THE CONSTRAINT ALGORITHM FOR TIMEDEPENDENT LAGRANGIANS.J Math Phys. 35 – 7, pp. 3410 – 3447. 1994.
  116. M de León; JC Marrero. CONSTRAINED TIME DEPENDENT LAGRANGIAN SYSTEMS AND LAGRANGIAN SUBMANIFOLDS. J Math Phys. 34 – 2, pp. 622 – 644. 1993.
  117. JC Marrero; J Rocha. SASAKIAN M HYPERBOLIC LOCALLY CONFORMAL KAHLER MANIFOLDS. Rendiconti di Matematica. 13, pp. 41 – 74. 1993.
  118. D Chinea;M deLeón;JC Marrero. STABILITY OF INVARIANT FOLIATIONS ON ALMOST CONTACT MANIFOLDS. Publ Math Debrecen. 43 – 1-2, pp. 41 – 52. 1993.
  119. D Chinea; M de León; JC Marrero. TOPOLOGY OF COSYMPLECTIC MANIFOLDS. J Math Pures et Appl. 72,pp. 567 – 591. 1993.
  120. D Chinea; JC Marrero. CLASSIFICATIONS OF ALMOST CONTACT METRIC STRUCTURES. Rev Roumaine Math Pures Appl. 37, pp. 199 – 212. 1992.
  121. D Chinea; JC Marrero. CONFORMAL CHANGES OF ALMOST CONTACT METRICS TRUCTURES. Riv di Mat Univ di Parma.5-1,pp.19-31.1992.
  122. D Chinea; JC Marrero. CONFORMAL CHANGES OF ALMOST COSYMPLECTIC MANIFOLDS. Rendicontidi Matematica. 12, pp. 849 – 867. 1992.
  123. JC Marrero. LOCALLY CONFORMAL COSYMPLECTIC MANIFOLDS FOLIATED BY GENERALIZED HOPF MANIFOLDS. Rendiconti di Matematica. 12, pp. 305 – 327. 1992.
  124. JC Marrero.THE LOCAL STRUCTURE OF TRANS-SASAKIAN MANIFOLDS .Ann di Mat Pure ed Appl. CLXI,pp. 77 – 86. 1992.
  125. D Chinea; M de León;JC Marrero. LOCALLY CONFORMAL COSYMPLECTIC MANIFOLDS AND TIME-DEPENDENT HAMILTONIAN SYSTEMS. Commentationes Mathematicae Univ Carolinae. 32, pp. 383 – 387. 1991.
  126. D Chinea; M de León; JC Marrero. SYMPLECTIC AND COSYMPLECTIC FOLIATIONS ON COSYMPLECTIC MANIFOLDS. Publications de L’ Institut Mathematique. 50 – 64, pp. 163 – 169. 1991.
  127. JC Marrero. ALGUNAS PROPIEDADES DE CURVATURA DE VARIEDADES LOCALMENTE LOCALMENTE CONFORME CO-KAHLER. Rev Acad Canar Cienc. 1, pp. 261 – 270. 1990.
  128. D Chinea; JC Marrero. ON INVARIANT SUBMANIFOLDS OF LOCALLY CONFORMAL ALMOST COSYMPLECTIC MANIFOLDS. Boll Unione Mat Italiana. 7, pp. 357 – 364. 1990.

BOOKS

M de León; J C Marrero; D Martín de Diego. LAS MATEMATICAS DEL SISTEMA SOLAR, Colección ¿QUE SABEMOS DE …?  La Catarata 3. 2009. ISBN 978-84-00-08823-1.

D Iglesias Ponte; JC Marrero González;F Martín Cabrera;E Padrón Fernández; D SosaMartín. XV INTERNATIONAL WORKSHOP ON GEOMETRY AND PHYSICS. PAPERS FROM THE WORKSHOP HELD IN PUERTO DE LA CRUZ, SEPTEMBER 11-16, 2006. Publicaciones de la Real Sociedad Matemática Española. 11, pp. 366 pp. Madrid(Spain): 2007. ISBN 978-84-935196-1-2.

PROJECTS

PGC2018-098265-B-C32 GEOMETRY, MECHANICS AND CLASSICAL FIELD THEORIES, IPs: Juan Carlos Marrero and David Iglesias 2019-2022. RED2018-102541-T GEOMETRY, MECHANICS, AND CONTROL, IP: Juan Carlos Marrero. 2020-2021. NEW APPLICATIONS OF GEOMETRIC INTEGRATION IN ENGINEERING. IP: David Martín de Diego. 2019-2021. For information of previous project see My Complete CV